博客
关于我
工程搭建 打算采用idea maven项目 遇到问题 spark dataset和dataframe问题
阅读量:638 次
发布时间:2019-03-14

本文共 598 字,大约阅读时间需要 1 分钟。

Spark DataFrames和DS (DataSets)是Spark程序中处理数据的核心数据结构,自Spark 1.3.0版本发布以来,随着技术的不断演进,DS逐渐成为新的默认数据处理模式。在Spark 1.6.0版本中,DS被引入,且在Spark 2.0版本中,DataFrame和DataSet ultimately merged into DataSet,进一步简化了数据处理流程。这两种数据结构基于Spark的核心计算模型-Resilient Distributed Dataset (RDD),使它们能够以不同方式支持各种数据处理需求,并通过简单的API实现无缝转换。

DataFrames和DSs都基于RDD,支持灵活而高效的数据操作。选择使用哪种数据结构取决于工作流程的具体需求:如果需要灵活地处理各种数据类型(包括非结构化数据),则DataFrames可能更适合;而如果优化处理高性能计算任务,DSs则提供了更强大的性能支持。这种灵活性使得在Spark程序中无缝切换DataFrames和DSs成为可能,从而让开发者能够根据项目需求选择最合适的数据处理工具。

Spark在不断更新中不断优化了对数据处理的支持,提升了数据操作的效率和性能。无论是处理结构化数据还是非结构化数据,Spark都能通过DataFrames和DSs提供强大的支持,帮助开发者高效完成数据分析和处理任务。

转载地址:http://gmblz.baihongyu.com/

你可能感兴趣的文章
Object类有哪些方法,hashcode方法的作用,为什么要重写hashcode方法?
查看>>
Object类有哪些方法?各有什么作用?
查看>>
Objenesis创建类的实例
查看>>
OBObjective-c 多线程(锁机制) 解决资源抢夺问题
查看>>
OBS studio最新版配置鉴权推流
查看>>
Obsidian 彩色标题
查看>>
Obsidian的使用-ChatGPT4o作答
查看>>
Obsidian笔记记录GPT回复的数学公式无缝转化插件Katex to mathjax
查看>>
ObsoleteAttribute 可适用于除程序集、模块、参数或返回值以外的所有程序元素。 将元素标记为过时可以通知用户:该元素在产品的未来版本中将被移除。...
查看>>
OC block声明和使用
查看>>
OC Xcode快捷键
查看>>
oc 中的.m和.mm文件区别
查看>>
OC 中的重写 OC中没有重载 以及隐藏
查看>>
OC 内存管理黄金法则
查看>>
oc57--Category 分类
查看>>
occi库在oracle官网的下载针对vs2008
查看>>
OceanBase 安装使用详细说明
查看>>
OceanBase详解及如何通过MySQL的lib库进行连接
查看>>
ocp最新题库之052新题带答案整理-36题
查看>>
OCP题库升级,新版的052考试题及答案整理-18
查看>>